
PER LINGUAM VOL. 3 NO. 1 1987

A computer programme for sentence
comprehension
Sascha W. F elix

This paper presents the outlines of a computer programme for the analysis of English
sentences. The programme is written in BASIC and implemented on a Sharp MZ 80
B. Its theoretical orientation is Chomsky's theory of government and binding. The
programme will thus distinguish between grammatical and ungrammatical sentences,
give a structural description of input sentences and state reasons for ungrammaticali
ties. At present the programme handles successfully main and embedded clauses
(long distance), wh-movement and NP-movement in passives.

Met hierdie artikel word 'n rekenaarprogram beskryf waarmee sinsontleding (Engels)
gedoen kan word. Die program is in BASIC geskryf en word gelmplementeer op 'n
Sharp MZ 80 B. Die teoretiese onderbou berus op Chomsky se teorie vir regering en
binding. Gevolglik is die program in staat om te onderskei tussen grammatikale en
ongrammatikale sinne, dit kan 'n strukturele beskrywing gee van gegewe sinne en
redes aandui vir ongrammatikaliteite. Tans hanteer die program hoof- en bysinne
(lang afstand), wh-verskuiwing en NP-verskuiwing in passiewe sinne.

1 Introduction
In recent years there has been a growing interest
in the development of theoretical models for a
human sentence parser (Fodor 1978; Frazier &
Fodor 1978; Wanner & Maratsos 1978; Frazier et
al. 1983; Johnson-Laird 1983). These models are
theoretical in the sense that researchers have
attempted to specify some general properties
that must be minimally attributed to a parser
which is to handle successfully sentences of a
specific format. In general, these are sentences
whose surface structure may lead a parser
working linearly from left to right to choose an
incorrect structural description without being
able to discover the correct solution until at a
much later parsing stage. Consider sentence (1)
and (2):

(1) who did the teacher promise to reconsider
the problem

(2) who did the teacher promise to write a
book about

Since promise optionally takes an object, the

20

parser may be led to assume that who is the
object of promise by the time it arrives at the
embedded sentence. This assumption is, of
course, correct for (1), but incorrect for (2). In
the latter case, however, the parser cannot
discover its error until it has worked through to
the end of the sentence.

Much current debate focuses on the question of
what kind of linguistic theory a successful parser
must be based on (Berwick & Weinberg 1983).
Presently the two most likely candidates seem to
be Gazdar's generalized phrase structure gram
mar (GPSG), (Gazdar 1982) and Chomsky's
theory of government and binding (GB),
(Chomsky 1981).

This paper is a first report on a project currently
pursued at the University of Passau in which we
attempt to develop a computer programme that
reflects some of the major theoretical considera
tions of the parsing literature. In order to see at
the same time whether or not such a goal can be
achieved with fairly simple and unsophisticated
equipment, we use a personal computer Sharp

http://perlinguam.journals.ac.za

MZ SOB and BASIC as the programming lan
guage (BASIC = Beginner's All-Purpose Sym
bolic Instruction Code).

Although it is obvious that the present program
me is far from being an even remotely psycholo
gical model of human sentence parsing, we have
imposed a number of basic requirements on the
programme, which, in a sense, reflect typical
properties of human sentence comprehension.
Following this guideline we eventually hope to
gain insight into human parsing by studying the
formal properties of a successful computer
programme.

The primary requirement is, of course, that the
computer system should be able to assign the
correct structural description to the sentence to
be parsed. However, the system should also be
able to handle ungrammatical sentences and
identify them as such. That is, the system should
provide grammaticality judgments on sentences.
As a final requirement, the system should
identify different kinds of ungrammaticality.
Consider (3)-(5):

(3) *loves Mary old the man

(4) *who does Mary love the man

(5) *who does Mary love John and

Even though (3)-(5) are all ungrammatical,
speakers of English have fairly clear intuitions
about the fact that these sentences are ungram
matical for different reasons. In a similar man
ner, we expect the computer system not only to
identify ungrammatical sentences, but also to
specify the kind of ungrammaticality.

The linguistic theory which the system operates
on is Chomsky's theory of government and
binding (1981). The crucial feature of this theory
is that it contains not only rules of grammar but
also conditions for well-formedness, that is,
constraints on the output of the rules. Conse
quently, one part of the computer programme
will analyse the input sentence according to these
rules, that is assign a structural description to the
sentence, and another part will check whether or
not the structural description meets the condi
tions for well formed syntax. It is thus obvious
that an input sentence may fall through at two
different levels. Either the system will not be
able to assign a structural description to the input
sentence, which would be the case, for example,

21

in (3), or the structural description will fail to
meet any one of a certain number of output
constraints which would happen for sentences
such as (4) and (5). Depending on where the
sentence falls through, the system will identify
different kinds of ungrammaticality. Further
details will be specified in section 2.

It is self-evident that in developing a computer
programme for linguistic analysis one has to
decide what a programme, as yet incomplete,
should be able to do and what appears to be
dispensable at the present stage. So something
needs to be said about the possibilities and
limitations of the programme as it presently
stands.

Some limitations are purely system-internal. For
example, no input sentence may be longer than
53 symbols (including spaces), which simply
reflects the fact that in the system we are using,
alphanumeric variables are limited to that
length. For longer sentences one would need
more than one variable. In principle, this is no
problem, but it would merely make our problem
more complex at a level which does not seem
very interesting.

Other limitations reflect deliberate decisions of
preference on our part. First, the system ignores
morphology. It does not distinguish singular
from plural, nor past tense from present tense.
Since we are primarily interested in syntax, in
particular in the types of structures that have
motivated recent research in parsing mechan
isms, this limitation does not affect our principal
goal.

At present the lexicon comprises sixty two items,
so the system will accept relatively few sen
tences. To those familiar with the linguistic
literature it will come as no surprise that most
sentences are about John loving Mary or about
someone saying or believing so. Expanding the
lexicon is, of course, a matter of spending a few
more hours on routine work rather than on
creative work.

Finally, the system does not accept more than
one auxiliary or adverbials or prepositional
phrases for which the verb is not subcategorized.
This latter fact is obviously a more serious
limitation which will have to be remedied as soon
as the programme accomplishes the essentials.

http://perlinguam.journals.ac.za

Apart from these limitations the system accepts
sentences of any complexity. In particular, it can
handle any type of constituent co-ordination and
any number of sentence embeddings, except
relative clauses. It furthermore accepts passives
as instances of NP-movement and it handles wh
movement including long distance extractions.
Of course, these are all fairly modest accom
plishments and it is clear that there is more the
system can't do than what it can do. However,
the way the system does what it can do provides
interesting insights into how a parser has to be
constructed.

2 Programme structure

The programme consists of three essentially
independent parts:

(1) preparation routine

{2) parsing routine

(3) well-formedness routine

The motivation of the first part is purely system
internal, since the computer accepts the input
sentence merely as an alphanumeric variable
consisting of a certain number of symbols.
Before the actual analysis can start, it is thus
necessary to segment the input sentence into
words and to identify the word class of each
lexical item. This is accomplished in the prepara
tional routine. The second part contains the
parsing routine. Its input is a sequence of
alphanumeric variables, each variable represent
ing one lexical item associated with the word
class it belongs to. The output of the parsing
routine is conventional labelled bracketing. If a
sentence has been successfully parsed - which
might not be the case, as we will see in section
2.2 -, the labelled bracketing will be transferred
as input to the third part. The well-formedness
routine checks the sentence structure for possible
violations of principles of universal grammar. If
no violations are found the sentence will be
qualified as "grammatical", otherwise as "on
grammatical" with indications of which princi
ple{s) is/are violated. I will discuss these three
parts of the programme in turn.

2.1 The preparation routine

After displaying the main menu, the system will
first read the lexicon which at present contains
sixty two items and store it in a specific memory

22

area for immediate access. Each lexical item is
associated with a set of four variables. The first
specifies the word class; the second various
information data as, for example "operator" in
the case of wh-words. The third variable contains
the lexical item's subcategorization frame {if
any): The fourth variable is currently empty
(= 0). The system will now ask for the sentence
to be analysed and this is entered in conventional
spelling. After the input has been completed, the
system will segment the sentence into words by
simply using spaces as cues. That is, any se
quence of letters surrounded by spaces is taken
to be a word. Subsequently the list of words
identified is displayed on the screen accompan
ied by the option of returning to the input
routine in case of error.

The next step is to identify each word's lexical
category and, again, to display the result on the
screen. This is done essentially by running
through the lexicon memory and by storing the
contents of the first variable as soon as the lexical
item has been found. If the sentence contains a
word that is not in the lexicon, the display will be
"no lexical entry for X". In this case it is possible
to return to the input routine for a new sentence.

This completes the preparation routine of the
programme. The final display of this part is a
concatenated sequence of lexical category sym
bols, for "Mary loves a nice boy" it will be
N+V+Det+A+N.

Internally the system will work with this se
quence of category symbols rather than with the
sequence of actual lexical items. It returns to the
lexical item only if decisions have to be taken
that depend on subcategorization information.
This is at present only the case with verbs. That
is, if the system encounters the category symbol
V, it will look which actual lexical item V stands
for, and will then decide, on the basis of that
particular item's subcategorization frame, on the
next step. It is clear that this routine can and
must be extended to other lexical categories, for
example nouns, ("the claim that S").

2.2 The parsing routine

The parsing part of the programme is essentially
a top-to-bottom and left-to-right routine, work
ing in the way of an ATN (=Augmented
Transitional Network) model. That is, the sys
tem runs through a prescribed number of

http://perlinguam.journals.ac.za

networks and attaches the network to the tree
structure once the relevant parses are completed.

At the present stage of our work the system is
heavily biased as to what a possible phrase
structure tree may look like. It will therefore
ignore anything that does not fit its biases, which
is an admittedly serious limitation, since any
optional constituents that a sentence may con
tain, in particular adverbials and non-subcate
gorised prepositional phrases, are simply thrown
out during that parse. Under a different perspec
tive we may say that the system is limited to
analysing only those elements of the predicate
that are dominated by VP or rather V, ignoring
all others. However, it should not be difficult to
extend the programme to accept also VP-consti
tuents that are optional. In principle, the system
should merely close the V after analysing the
obligatory predicate constituents, attaching all
the rest together with V to V.

The system will first enter the S/COMP network
for the analysis of the topmost sentence. If
during the subsequent parses the system en
counters a new sentence boundary it will return
to the S/COMP network starting over again. In
this way an unlimited number of embedded
sentences can be analysed in principle, although
for reasons of memory capacity the actual
number is at present limited to two.

The system knows that the initial position of any
S is COMP. Currently the system can only
identify that or wh-words as potential elements
of COMP (topicalisations can therefore not be
handled). It will thus check if the sentence-initial
item is one of these elements and, if so, attach it
to COMP. If the system finds that in initial
position of the topmost S, the sentence will be
labelled as "ungrammatical" during the well
formedness routine which will be discussed in
detail in section 2.3. For subject sentences ("that
John loves Mary surprises me") there will be a
restructuring process, so by the time COMP
violations are checked, that will no longer be in
the topmost S. If the system does not find any
element that qualifies for COMP, it will assign
"e" (empty) to that node.

Since the system knows that COMP is followed
by the subject NP it will next enter the NP
network. The computer will scan through the
subsequent lexical categories until it finds a
noun, assuming that that noun is the head of NP.

23

It will further assume that all elements between
COMP and the noun are members of the NP. If
the noun is the only member, it will immediately
attach it to NP.

The system will expect only Det, A and/or Adv
to the left of the noun and will analyse the NP
accordingly. Co-ordinations are also adequately
handled within this routine. If the system en
counters a co-ordinator (and/or), it will know
that the element following the co-ordinator has
to be the same as the one preceding it. If it does
not find an identical element (e.g. *the nice and
man), it will construct one to which it assigns an
empty category (EC). In this case the sentence
will be ruled out as ungrammatical in the well
formedness routine. Co-ordinated determiners
("the and a man") are ruled out independently.

After this system has worked through all the
relevant items it will check whether or not the
first noun is followed by a co-ordinator, in which
case a further NP is expected and the routine
starts over again. Otherwise the system will leave
the NP network.

Let us assume that the system does not find a
noun between COMP and the first verbal ele
ment as in who loves Mary or ... loves Mary old
the man. In this case it will assume a phonetically
unrealised NP to which it assigns an EC.

The system now enters the VP netwvrk looking
for the first verb category. It will then check if
there is an AUX to the left of the verb. If there is
not, it will again assign an EC to AUX. Once the
first verb has been found the system will look up
its subcategorization frame. Suppose the verb is
transitive. In this case the system will temporari
ly return to the NP network. If it doesn't find an
NP as in who does John love, it will again assign
an EC to that NP. In general the system will
assign an EC to any syntactic category that it
expects on the basis of subcategorisations, but
doesn't find. Suppose the verb is intransitive. In
this case the system closes the VP and will
therefore simply ignore any NP that may ne
vertheless appear.

This procedure has some interesting conse
quences because subcategorisation violations will
be recognised in different ways. Consider
(6)-(8):

(6) *who does John see Mary

http://perlinguam.journals.ac.za

(7) *John sees

(8) *John runs Mary

The system will correctly reject all three sen
tences as ungrammatical, but in each case for a
different reason. (6) and (7) will pass the parsing
routine and be rejected in the well-formedness
part in ways to be explained in section 2.3. (8)
will be thrown out within the final part of the
parsing routine to which I will shortly return.

If the verb is subcategorized for S, the system
will return to the S/COMP network and start the
routine again in obvious ways. If the verb is
subcategorised for more than one category, or
for different categories, the system will try out all
the various possibilities and look for the respec
tive categories.

At the end of each parsing step as well as the
entire procedure the labelled bracketing which
the parser has constructed will be displayed on
the screen. Crucially, the labelled bracketing
may contain more or less material than the
original input sentence. It will contain more
material if empty categories have been assigned
for phonetically unrealised constituents, and less
material, if the parser encounters material which
it cannot integrate into the tree and therefore
ignores. Consider again sentence (8). After the
parser has correctly analysed John runs, the V
will be closed, since run is an intransitive verb.
The following NP Mary is thus ignored because it
does not fit into the tree. For an input sentence
such as (8) the parser will simply yield the output
(9):

(9) [
s

[John 1
NP

[[e 1
VP AUX

[runs 11
V

In the final step of the parsing routine the system
will compare the lexical material in the output,
that is, John runs, with the input sentence, that is
John runs Mary. If there is a mismatch between
the two, that is, if the input sentence contains
lexical material that does not reappear in the
parsing result, the sentence will be classified as
ungrammatical with the additional indication
that it is "unparsable". Unparsable in this sense
implies that the parser found material in the
input sentence which - in plain language - it did
not know what to do with. This will happen in
case of certain types of subcategorisation viola
tions and with "mixed-up" word orders.

24

2.3 Well-formedness routine

If a sentence has successfully passed the parsing
routine, its labelled bracketing is transferred as
input to the well-formedness routine. The output
of this part is a grammaticality statement (gram
matical versus ungrammatical). If a sentence is
found to be ungrammatical, the system indicates
which principle of Universal Grammar is
violated.

It seems obvious that this part of the programme
will eventually turn out to be the most complex
routine. At the present stage of our work there
are only three areas in which the system is able
to detect ungrammaticalities.

First, the topmost sentence is checked for the
presence of a complementiser. If it finds, for
example that, the sentence is classified as un
grammatical. Second, the system checks for
empty NP's in co-ordination, in which case the
sentence is again labelled as ungrammatical. This
subroutine has eventually to be integrated into a
check-up for subjacency violation which we have
not completed yet. The major part of the well
formedness routine concerns wh-movement, that
is the appropriate binding of variables. The
system first determines whether or not there is
an operator (= wh-word) in COMP. If there is
one, the system will scan through the tree
structure for empty NPs. If it does not find one,
the operator does not bind a variable, thus
violating the binding theory and the bijection
principle (Chomsky 1982). Under this subroutine
a sentence such as (6) will be recognised as being
ungrammatical. If the labelled bracketing of a
sentence such as (7) contains an empty NP (=
the object), but lacks an operator in COMP, this
EC will be unbound, violating Principles A and
B of the binding theory (Chomsky 1982). Conse
quently this sentence will be recognised as
ungrammatical, too, because of binding viola
tions. More generally speaking, the system
checks if each operator binds a variable and if
each variable is bound by an operator.

This completes the description of the major
features of the programme as it currently stands.
We are at this moment working on a subroutine
for NP-movement, that is binding of anaphors in
accordance with Principle A. I will therefore
discuss a few problems faced in this area, and the
way in which we plan to solve them.

http://perlinguam.journals.ac.za

The system has a few problems in handling NP
movement in simple passives and raising-verb
constructions such as (10) and (11):

(10) John was killed e

(11) John seems e to love Mary

The system must only know that ECs in the
context of passive and raising constructions
reflect NP-movement rather than wh-movement
and can then check proper binding in ways
similar to the previous cases. The crucial prob
lem arises if a sentence contains more than one
EC, one of which is a variable, the other an
anaphor as in (12):

(12) who does John seem e to love e

The system has to know that the first EC is the
trace of John, while the second is a variable
bound by who, and not the other way round.

In the case of (12) a simple solution suggests
itself. If the number of ECs matches the number
of possible binders, the sentence will be gramma
tical; that is in (12) we have two ECs and two
binders (John and who). Of course, this array of
facts is purely accidental as (13) shows, where we
have again two ECs but only one lexical binder
(John):

(13) John seems e to have been killed e

The correct solution is, of course, that the system
must be able to distinguish between anaphors
and variables. Crucially, this has to be accom
plished by means independent of the presence
versus absence of lexical binders.

We are presently working on a solution that
relies essentially on Case Theory. Anaphors
differ from variables in that the former don't
have case, whereas the latter do. This distinction
can be determined by the system on the basis of
the available labelled bracketing. Thus in (12)
the subject-EC does not have Case since the verb
is non-tensed, whereas the object-EC receives
Case from love. The system therefore knows that
the first EC must be an anaphor while the second
is a variable. Hence it can look for the proper
binder in each case. In (13) neither EC receives
Case and therefore must be an anaphor.

If this solution turns out to be correct, it will
have some interesting consequences, namely that
Case Theory must apply before Binding Theory.

25

In other words, different principles of Universal
Grammar may have a different status, an idea
which may be worth while exploring.

3 Conclusion

In this paper we have presented the outlines of a
computer programme for the analysis of English
sentences. The basic structure of this programme
derives from recent considerations in linguistic
theory. In particular, the programme takes
grammar to be an essentially independent mo
dule and distinguishes furthermore between
parsing as structure-building governed by rules
of grammar and checking well-formedness con
straints on output structures.
Although the programme is still in the early
stages of development, the general approach
appears to be quite promising.

Bibliography

BERWICK, R. & WEINBERG, A. 1983. The
role of grammars in models of language use.
Cognition 13.

CHOMSKY, N. 1981. Lectures on government
and binding. Dordrecht: Floris.

CHOMSKY, N.b 1982. Some concepts and
consequences of the theory of government and
binding. Cambridge, MA: MIT press.

FODOR, J. 1978. Parsing strategies and con
straints on transformations. Linguistic Inquiry 9.

FRAZIER, L., CLIFTON, C. & RAND ALL, J.
1983. Filling gaps: decision principles in sentence
comprehension. Cognition 13.

FRAZIER, L. & FODOR, J. 1978. "The sau
sage machine": a new two-stage parsing model.
Cognition 6.

GAZDAR, G. 1982. Phrase structure grammar.
JACOBSON, P. & PULLUM, G. (eds), The
nature of syntactic representation. Dordrecht:
Floris.

HALLE, M., BRESNAN, J. & MILLER, G.
(eds) 1978. Linguistic theory and psychological
reality. Cambridge, MA: MIT press.

JACOBSON, P. & PULLUM, G. (eds) 1982.
The nature of syntactic representation. Dor
drecht: Floris.

http://perlinguam.journals.ac.za

JOHNSON-LAIRD, P.N. 1983. Mental models.
Cambridge: Cambridge University Press.

WANNER, E. & MARATSOS, M 1978. An
ATN approach to comprehension. In: HALLE,

26

M., BRESNAN, J. & MILLER, G. (eds),
Linguistic theory and psychological reality. Cam
bridge, MA: MIT Press.

http://perlinguam.journals.ac.za

